| eCB signaling-microbiota
partnership in ASD | bjects /System
model | Major Effects | | Study | |---|------------------------------------|--|----------|----------------------------| | Gut microbiota dysbiosis | Human HT-29
epithelial
cells | Dysregulates the intestinal eCB system | + | Rousseaux et
al., 2007 | | Lactobacillus acidophilus supplementation | | Increased intestinal cells CB2 receptor mRNA expression | 1 | | | eCB and PEA faecal levels | General population | Prediction of the association between gut microbial diversity and anhedonia | | Minichino et
al., 2021 | | Prebiotic treatment: mucin-degrading Gram- negative bacterium | Children with ASD | A. muciniphila supplementation improves gut permeability/increases 2-AG intestine levels | 1 | Everard et al.,
2013 | | Prebiotic treatment: mucin-degrading Gram- negative bacterium | Children with ASD | A. muciniphila supplementation provides beneficial effects dependent on eCB-derived lipids of the 2- AcGs family | 1 | Depommier et
al., 2021 | | Mucin-degrading Gram-
negative bacterium | Children with ASD | Decreased A. muciniphila abundance | 1 | Wang et al.,
2011 | | Mucin-degrading Gram-
negative bacterium | Children with ASD | Increased A.
muciniphila
abundance | 1 | De Angelis et
al., 2013 | | Ultramicronized PEA + Luteolin coadministration | ASD-like BTBR mouse model | Decreased ASD- like repetitive behavior/ pro- inflammatory cytokine production/ intestinal permeability/ Increased sociability | 1 | Cristiano et al., 2018 | |---|------------------------------------|---|---|---| | B. longum probiotic mix (including Lactobacillus acidophilus and B. infantis) supplementation | zebrafish | Increase intestinal mRNA expression of Cnr1 and Cnr2 genes Decrease of faah and mgll gene expression | 1 | Gioacchini et
al., 2017 | | B. fragilis supplementation | ASD-like MIA
model | Improves social- communicative deficits/ integrity intestinal barrier | 1 | Hsiao et al.,
2013 | | Bifidobacterium longum | Children with ASD | ASD depletion of B. longum Decrease butyrate- producing bacteria | 1 | Coretti et al.,
2018
Sugahara et
al., 2015 | | Butyrate treatment | ASD-like VPA
and BTBR
models | Improvement memory and social behavior | 1 | Takuma et al.,
2014
Kratsman et
al., 2016 | | Butyrate and butyrate-
producing bacteria | Children with ASD | Lower levels of butyrate and abundance of Lachnospiraceae | 1 | Liu et al.,
2013 | | Butyrate treatment (concentration-dependent effects) | Epithelial
cell line
Caco-2 | Decrease eCBs
synthetizing
enzymes (i.e.,
NAPE-PLD; DAGL) | Hwang et al., 2021 | |--|--|---|--| | eCB system and signaling | Children with
ASD vs ASD-
like VPA
murine model | eCB signaling FAAH and MAGL increased expression Decrease of 2-AG serum levels | Zou et al., 2021 | | Vitamin D | Vitamin D deficiency pregnancy Vitamin D supplementati on | Risk of ASD Improve expression ASD symptoms | Lee et al., 2021 Principi and Esposito, 2020 | | PEA and vitamin D | Epithelial
cell line
Caco-2 | CB2 receptor activation | Morsanuto et al., 2020 | | Microglial cells
morphology | ASD subjects | Changes in microglial cells phenotype (e.g., decreased ramified microglia) | Lee et al.,
2017 | | PEA availability | Primary
microglia
cell culture | Increase
microglial
phagocytic/
Migratory
activity | Guida et al., 2017 | | CBDV supplementation | ASD-like VPA murine model | Microglia
activation/ Decrease deficit
social behavior/ Upregulation CB2 RS | Zamberletti et al., 2019 I | | Bacteroides | ASD subjects | Reduced levels | Cao et al., 2021 | | Bacteroides | eCB-like
production | High affinity
GPR119
(2-OG and OEA) | 1 | Cohen et al.,
2017 | |--|---|---|---|-------------------------| | Systemic inflammation | ASD-like MIA
murine mice | Segmented
filamentous
bacteria (SFB)
promotes TH17
intestinal | 1 | Farkas et al.
2015 | | | Mice lacking
SFB | biogenesis TH17-induced increase IL17-a plasma levels | 1 | Kim et al.,
2017 | | | | Failure of MIA-
induced ASD-like
symptoms | 1 | | | AEA, Δ9-THC, CBD administration | TH17-driven
diseases | Microglia
activation/ | 1 | Kozela et al.,
2019; | | | | Decrease deficits
social behavior/
Upregulation CB2 | 1 | Jackson et al.,
2014 | | | | Rs | - | | | Lactobacillus plantarum supplementation | Cecum and colon samples | Decrease SFB
abundance | 1 | Fuentes et al.,
2008 | | SCFAs supplementation Physical exercise | Gut
microbiota-
eCB system
interaction | Anti-inflammatory activity via eCB signaling Increase SCFA- | | Vijay et al.,
2021 | | Involcat exercise | | dependent AEA, OEA and PEA levels | 1 | | | | | AEA and OEA
correlation with
SCFAs receptor
expression | | | | | | | | | $\begin{tabular}{ll} \textbf{TABLE 2} \\ \textbf{Summary table of the key studies involving eCB signaling and gut microbiota crosstalk in both patients with ASD and ASD-like animal models.} \\ \end{tabular}$